
Distributed software platforms for rehabilitating
obsolete hardware

Ruggero Russo
Department of Computer Science
La Sapienza University of Rome
Email: ruggero.russo@email.it

Davide Lamanna
Ingegneria Senza Frontiere

Rome, Italy
Email: davide.lamanna@isf-roma.org

Roberto Baldoni
Department of Computer Science
La Sapienza University of Rome
Email: baldoni@dis.uniroma1.it

Abstract: Diffusion of ICTs created the issue of an enormus
quantity of old computers to be discarded (e-Waste). Sustain-
able dismantle is becoming a global enviromental emergency.
In this scenario, Trashware movement is spreading worldwide
to give to computers the correct time of obsolescence and to
face the ecological problem related to e-waste. Workgroups
aim to profitably reuse discarded computers as an alternative
to dismantling them. The spread of this phenomenon is deeply
related to the Open Source and Free Software movements. The
purpose of this piece of research is to combine Trashware
to Clustering, in order to verify if further optimisations are
possible. Experimentation was conducted on clusters of old
machines and results are hereby presented.

Keywords: Trashware, Clustering, Recycling, Environmen-
tal issues, Digital Divide.

I. I NTRODUCTION

The tremedous diffusion of Information and Communication
Technologies (ICTs) has had as a consequence that nowadays
a huge quantity of computers are widespread around the world.
This is particularly evident in that part of the world, referred
to as Global North, where ICTs are massively developed and
adopted. Computers are often replaced with a high frequency:
12-18 months for business users, 4 years for home users [6].
As a result, every year 150 millions of computers are discarded
in the world. This situation has led to the urgent problem of
managing the waste of obsolete ICTs (e-Waste).

As a consequence of Moore’s law1, power of microproces-
sors is expected to duplicate every one and a half years. Such
an extimation comes, of course, from an empirical observation
and does not answer the basic question: why are computers
replaced? It is a fact that software systems become more and
more complex with time, often providing new features and
functionalities which do not address real user needs. This is
particularly true for ”standard users”, i.e. users who only need
simple office applications and navigation tools and who are
by far the most common. Workers of public administrations
are a good example. Moreover, the common practice of not
distributing software source-code prevents users from almost
any possibility of optimising their systems.

1Number of transistors per square inch on integrated circuits doubles every
1.5 years.

It can be, hence, said that the main reason why hardware
needs to have higher and higher performance is that software
is, often uselessly, more and more resource consuming and not
accessible. Software development relies on hardware develop-
ment and viceversa. Such a vicious circle causes a damage
for users, who are obliged to buy new hardware even if they
do not really need new software, thus generating what can be
defined ”ICTs consumism”.

Unfortunately, discarding computers does not come for free.
Often computers end up in dumps which are not suitable for
disposing of them. They release polluting substances, such as
mercury, lead, hexavalent chromium [4], resulting in a real
environmental emergency. Chemical draining and recycling
are not efficient processes: only the 10% of materials can
be recovered, by means of not favourable expenses [6], [13].
Laws exist which regulate disposition of computer waste2,
though they are often disregarded, so that 90% of obsolete
computers end up in dumps.

Despite of this, the demand of computers in the world
remains constantly high and in most cases increases [15].
For example, less developed countries are trying to fill the
big gap existing between Global North and Global South in
terms of ICTs diffusion, the so called Digital Divide [12]. If,
from one side, ICTs are essential for human develpment, from
the other side, the present computer production and software
development represent a totally unsustainable process.

For these reasons, the authours believe that rehabilitating
computers, which are erroneously considered obsolete, for
redistributing them is a topic of high relevance. The objective
of the piece of research hereby presented is an evaluation of the
technical possibility of optimising peformances of discarded
computers through clustering (Section III) and open source
software. In particular, focus is given to the possibility of
making old boxes usable by ”standard users”. This is relevant
for the social purposes of Ingegneria Senza Frontiere (En-
gineering Without Frontiers), a non-profit organisation that is
involved in international cooperation, appropriate technologies
and education for development.

2Directive 2003/108/EC of the european parliament and of the council of
8 December 2003.

II. T RASHWARE: DEFINITION AND RELATED WORK

The term Trashware was first used in the year 2000 by
Golem, a Linux User Group of Empoli, Italy. It merges the
words Trashing and Hardware and refers to the profitable reuse
of discarded computers as an alternative to dismantling them.
A common inducement for who works on Trashware today, in
Italy and in the world, is the ecological question. As a matter
of fact, doing Trashware means working on a sustainable
adoption of hardware resources which are still effectively
usable and are instead destined to dumps. The social purpose
is another shared motivation. Boxes are collected from firms,
public bodies or private citizens, in order to be refurbished and
donated to non-profit organisations, international cooperation
and solidarity projects.

Trashware is indissolubly related to Open Source, as this
represents an indispensable tool for it. Open Source enables
full control on hardware/software optimisation. Besides, soft-
ware development is supported by a community that can
provide online help, frequent updates and bug fixes. Costs are
pull down, as there is no need to pay licenses and hardware is
basically for free. This is particularly relevant if social purpose
and developing countries are concerned. Not to mention that
Free Software garanties independence from foreign actors and
big firms, which actually favour technical obsolescence by
proposing and adopting proprietary software.

Among Trashware initiatives, the work of Golem, a world-
wide pioneer in the field, is certainly remarkable. They pro-
vided the idea, technical bases and guidelines for Trashware
projects [7]. Since year 2000, they have carried on projects
supporting voluntary organisations, both locally and in devel-
oping countries.

Another interesting workgroup is Lazarus Project, an inter-
national initiative promoted by EdOsNet.org pursuing reuse of
discarded hardware in primary and secondary schools. They
are involved in supporting Free Software, open formats and
the culture of reutilization.

Also Prodigi, an association based in Rome, works in the
field. Prodigi implements strategies to fight digital exclusion.
In 2003, they carried on a project in Tunisia [8], where they set
up two computer labs based on Free Software and Trashware
and held computer courses.

The year before, Ingegneria Senza Frontiere (ISF) imple-
mented a similar project in Kosovo [9], [10]. ISF believes
that Trashware can play an important role in international
cooperation to fight Digital Divide. For this reason, a specific
workgroup was created in 2003 in collaboration with the
Department of Computer Science of La Sapienza University of
Rome (DIS). Aspects of Trashware were studied in an original
way, i.e. by making use of clustering, in order to optimise
resources to the extreme.

III. C LUSTERING

Clustering systems are used to integrate resourses belonging
to two or more computers (that could othewise work sepa-
rately), working together to increase both computational power
and reliability of the entire system. The basic idea of clustering

is distributing load among the computers in the cluster (cluster
nodes), so that free resources of a node become available to
the whole system. Cluster dimensions can grow by adding
machines. Speed and computation capacity of a cluster depend
on the ones of its nodes and on the speed of the network.

A clustering system should use the available hardware at
best, even in dynamically variable conditions. This represents
a real challenge when dealing with an etherogeneus cluster
(built with unhomogeneous hardware) or when setup changes
in an unpredictable way, because of the addition or removal
of nodes. There are three kinds of clusters: Fail-over, Load-
balancing and High Performance Computing. A Fail-over
Cluster consists of two or more connected computers. Their
work is continuosly monitored so that when one host breaks,
another replaces it. A load-balancing Cluster uses a balancing
algorithm to migrate each job to the less loaded node. A HPC
Cluster is a system in which computers are set up to provide
a data processing center with high performances, which are
obtained by distributing processes between different machines
and parallelizing their execution. To implement the clusters
used in the present piece of work, two very different systems
were chosen:OpenMosix andLTSP.

A. OpenMosix

OpenMosix [2], [3] is an Open Source software used to turn
a GNU/Linux computer network in a cluster. It authomatically
balances the load between different nodes that can join or leave
the system, without service disruption. Load is distributed
among nodes according to their CPU speed. OpenMosix is a
Kernel Linux patch, and hence applications, files and resources
of a network of computers keep working without changes.
User do not notice differences between a single Linux system
and an OpenMosix one; from his perspective, the entire cluster
works as a normal, very fast GNU/Linux system. OpenMosix
has got a decentralized control, i.e. each node acts as it was an
indipendent system and it takes a decision based on a partial
knowledge of other nodes. This provides the possibility to add
and remove nodes trasparently, thus getting high scalability.

The load-balancing and mamory ushering algorithm are
used to manage available resources. The former lets cluster
efficiently split load among nodes, by forcing processes to
migrate from heavy loaded nodes to computers with free
resources. The latter balances memory load of cluster nodes.
It prevents performance decrease which is caused by a lack of
free memory. When a node starts to use swap, the algorithm
tries to migrate its processes towards another node with free
memory.

OpenMosix has got a hard limitation: it does not allow
migration of shared memory processes. Consequently, applica-
tions using shared memory (basically the most common end-
user programs) do not gain benefits from its use. This fact
constituted a remarkable obstacle for the aims of a research
very much based on end-user applications like the present
one. In fact, OpenMosix was designed for HPC, where shared
memory process are not necessarily relevant.

Fig. 1. Comparison between the ”poor” cluster and a modern architecture
(PIV), varying the number of nodes and of processes.

B. MigSHM

OpenMosix community is currently working on an ad-
ditional experimental kernel patch to address the issue of
migrating shared memory applications: Migshm [1], [14].
Migshm consists of 4 modules:

• Migration of shared memory processes;
• Communication Module;
• Consistency Module;
• Access log and migration decision

The first module allows OpenMosix to consider shared
memory processes as transferable to other nodes (thus rev-
olutionizing this clustering system behaviour). The second
module allows the communication between processes migrated
to different nodes that use the same shared memory page. The
third module regulates access to a shared memory page, so
that consistency for local copies of the same shared memory
page is preserved. In order for the system to work correctly,
it must be ensured that the last copy of each memory page
is read and that, when a process modifies a page, changes
are communinicated to all the other nodes. The last module
keeps track of the accesses to each shared memory page; on
the basis of information collected, load balancing algorithm is
improved, allowing OpenMosix to takes better decisions about
the most suitable node to receive a migrated process.

C. LTSP

Besides OpenMosix, another clustering system has been
studied and tested: LTSP [11]. This system is designed ac-
cording to a totally different philosophy with respect to Open-

Fig. 2. Speed up reached by the four-node cluster in comparison to node-2.

Mosix. It is a Master/Slave Thin Client system, which consists
of a certain number of diskless workstation connected to a
server. All the applications, processes and data management
run on it. Each workstation only provides keyboard, screen
and mouse, for the user to access applications and data.
LTSP gives a simple way to reuse low cost computers as
graphical terminals, connecting them to a GNU/Linux server.
This project was thought and built to be used in environments
in which a great number of computers is needed and strict
economical constraints prevail. As a matter of fact, LTSP gives
the possibility to use obsolete PCs, remove hard disk, floppy
and cdrom, add a network interface card, and generate a low
cost cluster very rapidly and cost effectively. This kind of
system has got great advantages from an economic point of
view, because clients are very cheap, more robust (they consist
of a lower number of components), have a longer time of
obsolescence, less energy consumption and are more resistant
in obstile environments. Each application runs on the server,
so updating is cheaper and faster. Using this kind of system,
one important disadvantage occurs, which is related to server
performance and robustness. When the number of clients
increases, the RAM of the server and its CPU speed must
grow too. This could represent a problem where economical
constraints are concerned. Furthermore, the entire cluster is
deeply dependent from the server, which becomes then a single
point of failure.

IV. EXPERIMENTS

Experimentation was developed in three steps in which dif-
ferent clustering systems (OpenMosix and LTSP) and different

Fig. 3. ”Poor” Cluster compared to Pentium 4.

versions of the same system (OpenMosix 2.4.22 and 2.4.21)
were installed and tested. The three steps are:

• test on OpenMosix
• test on OpenMosix+Migshm
• test on LTSP

A. Testbed

An etherogeneus cluster consisting of four nodes was used
for testing:

• node 1: Pentium MMX 166MHz 32Mb Ram and NIC
intell eepro100

• node 2: Pentium Celeron 733 MHz 64Mb Ram and NIC
3com 3c905

• node 3: Pentium MMX 200MHz 64Mb Ram and NIC
realtek RTL-8139C

• node 4: Pentium 133MHz 48Mb Ram and NIC ISA 3com
3c509

A 100Mbit/s switch connected the nodes, a GNU/Linux
Debian-3.0 distribution was installed on each computer and
X server was installed on node 2 and 4. On each machine,
kernels 2.4.21 and 2.4.22 were present, both compiled with
the OpenMosix patch. Cluster performance was compared to
an AMD Athlon XP 1700+ with 1Gb Ram and a GNU/Linux
Gentoo-2004 distribution running on it. For measuring LTSP
performance, a Pentium IV 1700 was used, with 384Mb RAM
and RedHat 9.0 distribution, working as a server and a Pentium
133Mhz with 48Mb of RAM and GNU/Linux Debian-3.0 as
a client.

Fig. 4. Scalability comparison.

B. Software test

Various kinds of tests were performed on the different clus-
tering systems. The behaviour of these systems was evaluated
with the aim of comparing ”poor” architectures to a modern
one. The first kind of tests was made on the OpenMosix cluster
(labelled Cluster-OM1) and is based on a purely theorical
approach. Dummy cycles with a large number of loops were
executed on it. The instructions used are as the following:

time awk ′BEGIN{for(i = 0; i < 20000; i++)for(j =
0; j < 10000; j++); }′ &. Each instruction is a single process,
so more than one of them needs to be launched in order to
see a migration and to observe an advantage from the use of
OpenMosix. These cycles have a huge processing cost and
stress the CPU consistently. The commandtime returns the
time spent to execute the instruction; the & operator provides
a new prompt for launching a new instruction straight away.

The second test is similar to the first one, but in this case
an existing application was launched:KFract . Here is the
instruction:

time kfract & xkill & ;
time returns the time spent to execute the instruction kfract.

Once again, & sends the process to background, thus allowing
to launch immediately another instruction before the previous
application ends. The commandxkill is used to terminate
KFract with a click on its window (thus obtaining a sufficiently
precise measure of time).

Each instruction kfract is a process and it is processed en-
tirely on a node. Hence, advantages for the use of OpenMosix
take place only if different instances of the same intruction
are launched, so that they migrate on different nodes.

Fig. 5. Time needed by the Cluster to complete an image rendering of
growing complexity, compared to the performance of a Pentium IV and of a
Pentium I.

In the third test, we measured the time needed by the cluster
to execute a graphic rendering of a number of images with a
growing complexity. For this purpose, a popular Open Source
application calledPov-ray was used. Time to complete the
rendering of different images is given by the application itself,
at the end of the execution. In the test, cluster performance
was compared to the PIV.

The last kind of tests, refers to applications that are fre-
quently used by common users (i.e. Kword, Konqueror and
Koffice). They all use shared memory, so OpenMosix patched
with Migshm was put to the test in this case. To test the
migration of shared memory processes, each of the following
instructions were launched 5 time:

time kword openmosix-howto.txt & xkill &
time konqueror openmosix-howto.txt & xkill &
Time used to open the fifth instance of each instruction was

considered to evaluate whether or not there is a gain by using
Migshm.

The gain reached by a Pentium I when it is put inside an
LTSP cluster as a diskless workstation was tested in the same
way.

V. RESULTS

In this Section, the results of the experimentation are
presented and commented.

A. Critical number of nodes

Figure-1 shows time spent by different configurations of the
”poor” cluster to execute dummy cycles, varying the number

Fig. 6. Trend of the percentual difference of time.

of nodes and of processess. Cluster performance are compared
to the PIV one.

The two-node cluster never reaches the performance of PIV.
The difference between the ”poor” cluster with three nodes and
the PIV, instead, decreases when the number of processess
grows. In particular, the cluster reaches and surpasses PIV
performance by the fifth process. The same result is obtained
for the four-node cluster. In this last case, the overtaking
of performance occures by the fourth process. Since the
difference between the three-node and the four-node cluster is
so small, it is possible to assume that four nodes are enough
to compete with the PIV and we use this number of nodes for
the other tests.

B. Cluster speed-up

Figure-2 shows the time spent by the four-node cluster to
execute the two kinds of dummy cycles varying the number of
processes, compared to the time spent by the most powerful
node in the cluster. It shows time linearly growing for node-
2 when the number of processes grows. The cluster reaches
better performance growing both the number of processes and
the complexity of the instruction.

C. ”Poor” Cluster vs. Pentium 4

In Figure-3, the execution of two kinds of dummy cycles is
shown. The cluster obtains better performance in comparison
to the Pentium 4 when the number of processes grows; in
particular, the picture shows the crosspoint, i.e. the point in
which the ”poor” cluster overtakes the PIV.

Figure-4 points out the comparison between the two kinds of
architecture (”poor” and ”rich”) in terms of scalability, i.e. in

Fig. 7. Comparison of the times spent to open different shared memory
applications, between the Cluster with and without migshm.

terms of number of jobs we can launch before the two systems
saturate (i.e. when performance collapses). PIV reaches this
condition with about 150 processes, while the cluster gets to
saturation with more than 250 jobs launched.

D. Graphic rendering

Figure-5 depicts the results of rendering tests. Pentium I
gets a huge benefit being a node of the cluster, obtaining
a great reduction of the rendering time. Even if the cluster
never reaches PIV in performance, it is remarkable that, as the
complexity of the images grows, the difference between the
two architectures decreases percentually, as Figure-6 shows.

E. Migshm and common user programs

Figure-7 presents a comparison between the two kinds of
OpenMosix cluster analyzed in this study, i.e. with and without
migshm patch. Tests verifyed that migshm effectively allows
the migration of shared-memory processes, a fact that is a
little revolution for OpenMosix. Improvements of the overall
performance were not significant, though. Nontheless, the
possibility of migrating applications is itself an advantage for
users and in the case of a high number of applications open
(which is not a so unfrequent situation) such an advantage can
play an important role.

F. LTSP and common user programs

Figure-8 shows the time needed by a client of the LTSP
cluster to open different instances of Konqueror, compared to
the time the client alone (i.e. without LTSP) needs. The picture

Fig. 8. Comparison between the LTSP cluster, PIV and PI, in terms of time
spent to open different common use applications.

also shows how close the performance of the LTSP-client and
of the PIV are.

VI. CONCLUSION

This reserch presented Trashware in a peculiar way, i.e.
merging it with the pure accademic research on clustering
systems. The aim was to optimize available resources through
load distribution among computers in a cluster. Two clustering
systems were tested: OpenMosix and LTSP, which differ for
their architecture (centralized vs. decentralized) as well as for
the purpose of their design (HPC vs. low-cost cooperating
terminals).

Tests on OpenMosix showed that the more CPU-bounded
applications are concerned, the better ”poor” clusters compete
with modern architectures, or even make better. Speed-up
increases with complexity and weight of applications.

In order to allow migration of shared-memory processes,
migshm patch was experimented. Overall performance were
not significantly increased, though the possibility of migrating
applications is itself an advantage for users, especially when
several applications need to be run at the same time. This
is relavant for end-uder applications, which are the main
objective of the investingation.

In this respect, much better results were obtained with LTSP.
This system is suitable for contexts with economical con-
straints, thus resulting ideal for development and cooperation
projects.

VII. F UTURE WORK

Reaserch will be carried on along three main directions:

• Experience with Migshm, following the development of
new versions for newer kernels;

• Combine thoroughly OpenMosix and LTSP approaches.
This practice is already the subject of other workgroups
[5], but to the best of our knowledge their research is
only limited to provide a simple and fast way to add
new diskless nodes to clusters rather than focusing on
the distribution of all functionalities of the LTSP server
through OpenMosix.

• Combine OpenMosix and UML (User Mode Linux) to
have a virtual OpenMosix cluster. This would allow
to test new kernels and software safely. Moreover it
could be possible to use the computational distribution of
OpenMosix to try to migrate entire virtual Linux system
(generated by UML).

ACKNOWLEDGMENT

The authors wish to thank the Trashware group of ISF-
Roma for its constant support, the colleagues at the Bugs
Lab of Strike S.P.A. who provided the main lab for the
experiments and Francesco Ruffino of IASI, CNR (Italian
National Research Council) who gave us access to a more
advanced testbed for benchmarking.

REFERENCES

[1] Moshe Bar and MAASK team. Mihshm. InLinux Congress, 2003.
[2] Amon Barak and Oren La’adan. The openmosix multicomputer operat-

ing system for high performance cluster computing. Technical report,
Institute of Computer Science, The Hebrew University of Jerusalem,
1998.

[3] Amon Barak and Amnon Shiloh. Scalable cluster computing with
openmosix for linux. Technical report, Institute of Computer Science,
The Hebrew University of Jerusalem, 1998.

[4] Carlo Buzzi. I numeri ed i rischi della spazzatura informatica.Punto
Informatico, 2003.

[5] Martin Daniau. LTSP-Mosix, 2001.
[6] WWF-Consorzio Ecoqual’IT. L’e-waste ladri di futuro-le cause e gli

effetti della mancata gestione dei rifiuti tecnologici. Technical report,
WWF, 2002.

[7] Golem. Trashware HowTo, 2001.
[8] Alessandro Inzerilli and Igino Gagliardone. Prodigi-il progetto tunisia,

2003.
[9] Davide Lamanna and Daniele Arena. Progetto kosovo,un anno dopo. In

Atti del Terzo Linuxday Italiano, Firenze 2003.
[10] Davide Lamanna and Stefano Puglia. Il software open source come

strumento di diffusione della conoscenza informatica: un progetto in
kosovo. InAtti della conferenza annuale AICA, Settembre 2003 Trento.

[11] James McQuillan.LTSP-Linux Terminal Server Project-v3.0, 2002.
[12] Pippa Norris. Digital divide. New York:Cambridge University Press,

2001.
[13] Kuehr Ruediger and Eric Williams. Computers and the environment:

Understanding and managing their impacts. Technical report, Kluwer
Academic Publishers, October 2003.

[14] Mulyadi Santosa. Checkpointing and distributed shared memory in
openmosix, Aprile 2004.

[15] George Sciadas. Monitoring the digital divide...and beyond. Technical
report, Orbicom, 2003.

